Skip to content

algorithms.py

Implementation of various unsupervised and self-supervised denoising methods.

DIP

Bases: Denoiser

Deep image prior.

Source code in src/autoden/algorithms.py
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
class DIP(Denoiser):
    """Deep image prior."""

    def train_unsupervised(
        self, tgt: NDArray, epochs: int, inp: NDArray | None = None, num_tst_ratio: float = 0.2, algo: str = "adam"
    ) -> NDArray:
        if inp is None:
            tmp_inp = inp = np.random.normal(size=tgt.shape, scale=0.25).astype(tgt.dtype)
            self.data_scaling_inp = 1.0
            self.data_bias_inp = 0.0
        else:
            range_vals_inp = _get_normalization(inp, percentile=0.001)
            self.data_scaling_inp = 1 / (range_vals_inp[1] - range_vals_inp[0])
            self.data_bias_inp = range_vals_inp[2] * self.data_scaling_inp

            # Rescale input
            tmp_inp = inp * self.data_scaling_inp - self.data_bias_inp

        range_vals_tgt = _get_normalization(tgt, percentile=0.001)
        self.data_scaling_tgt = 1 / (range_vals_tgt[1] - range_vals_tgt[0])
        self.data_bias_tgt = range_vals_tgt[2] * self.data_scaling_tgt

        # Rescale target
        tmp_tgt = tgt * self.data_scaling_tgt - self.data_bias_tgt

        mask_trn = np.ones_like(tgt, dtype=bool)
        rnd_inds = np.random.random_integers(low=0, high=mask_trn.size - 1, size=int(mask_trn.size * num_tst_ratio))
        mask_trn[np.unravel_index(rnd_inds, shape=mask_trn.shape)] = False

        losses_trn, losses_tst = self._train_dip(tmp_inp, tmp_tgt, mask_trn, epochs=epochs, algo=algo)

        if self.verbose:
            self._plot_loss_curves(losses_trn, losses_tst, f"Self-supervised {self.__class__.__name__} {algo.upper()}")

        return inp

    def _train_dip(
        self, inp: NDArray, tgt: NDArray, mask_trn: NDArray, epochs: int, algo: str = "adam"
    ) -> tuple[NDArray, NDArray]:
        losses_trn = []
        losses_tst = []
        # loss_trn_fn = models.MSELoss_TV(lambda_val=self.reg_tv_val, reduction="sum")
        loss_trn_fn = pt.nn.MSELoss(reduction="mean")
        loss_tst_fn = pt.nn.MSELoss(reduction="mean")
        optim = _create_optimizer(self.net, algo=algo)

        best_epoch = -1
        best_loss_tst = +np.inf
        best_state = self.net.state_dict()
        best_optim = optim.state_dict()

        inp_t = pt.tensor(inp, device=self.device)[None, None, ...]
        tgt_trn = pt.tensor(tgt[mask_trn], device=self.device)
        tgt_tst = pt.tensor(tgt[np.logical_not(mask_trn)], device=self.device)

        mask_trn_t = pt.tensor(mask_trn, device=self.device)
        mask_tst_t = pt.tensor(np.logical_not(mask_trn), device=self.device)

        self.net.train()
        for epoch in tqdm(range(epochs), desc=f"Training {algo.upper()}"):
            # Train
            optim.zero_grad()
            out_t = self.net(inp_t)
            out_trn = out_t[0, 0][mask_trn_t]

            loss_trn = loss_trn_fn(out_trn, tgt_trn)
            if self.reg_val is not None:
                loss_trn += losses.LossST(self.reg_val, reduction="mean")(out_t)
            loss_trn.backward()

            losses_trn.append(loss_trn.item())
            optim.step()

            # Test
            out_tst = out_t[0, 0][mask_tst_t]
            loss_tst = loss_tst_fn(out_tst, tgt_tst)
            losses_tst.append(loss_tst.item())

            # Check improvement
            if losses_tst[-1] < best_loss_tst if losses_tst[-1] is not None else False:
                best_loss_tst = losses_tst[-1]
                best_epoch = epoch
                best_state = cp.deepcopy(self.net.state_dict())
                best_optim = cp.deepcopy(optim.state_dict())

            # Save epoch
            if self.save_epochs:
                self._save_state(epoch, self.net.state_dict(), optim.state_dict())

        print(f"Best epoch: {best_epoch}, with tst_loss: {best_loss_tst:.5}")
        if self.save_epochs:
            self._save_state(best_epoch, best_state, best_optim, is_final=True)

        self.net.load_state_dict(best_state)

        losses_trn = np.array(losses_trn)
        losses_tst = np.array(losses_tst)

        return losses_trn, losses_tst

DatasetSplit

Store the dataset split indices, between training and validation.

Source code in src/autoden/algorithms.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
class DatasetSplit:
    """Store the dataset split indices, between training and validation."""

    trn_inds: NDArray[np.integer]
    tst_inds: NDArray[np.integer] | None

    def __init__(self, trn_inds: NDArray, tst_inds: NDArray | None = None) -> None:
        self.trn_inds = np.array(trn_inds)
        self.tst_inds = np.array(tst_inds) if tst_inds is not None else None

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}(\n  Training indices: {self.trn_inds}\n  Testing indices: {self.tst_inds}\n)"

    @staticmethod
    def create_sequential(num_trn_imgs: int, num_tst_imgs: int | None = None) -> "DatasetSplit":
        return DatasetSplit(
            np.arange(num_trn_imgs), np.arange(num_trn_imgs, num_trn_imgs + num_tst_imgs) if num_tst_imgs is not None else None
        )

    @staticmethod
    def create_random(num_trn_imgs: int, num_tst_imgs: int | None, tot_num_imgs: int | None = None) -> "DatasetSplit":
        if tot_num_imgs is None:
            tot_num_imgs = num_trn_imgs + num_tst_imgs if num_tst_imgs is not None else 0
        inds = np.arange(tot_num_imgs)
        inds = np.random.permutation(inds)
        return DatasetSplit(
            inds[:num_trn_imgs], inds[num_trn_imgs : num_trn_imgs + num_tst_imgs] if num_tst_imgs is not None else None
        )

Denoiser

Denoising images.

Source code in src/autoden/algorithms.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
class Denoiser:
    """Denoising images."""

    dataset_name: str
    n_channels: int

    data_scaling_inp: float | NDArray
    data_scaling_tgt: float | NDArray

    data_bias_inp: float | NDArray
    data_bias_tgt: float | NDArray

    net: pt.nn.Module

    device: str
    save_epochs: bool

    verbose: bool

    def __init__(
        self,
        dataset_name: str,
        network_type: str | NetworkParams,
        network_state: Mapping | None = None,
        data_scaling_inp: float | None = None,
        data_scaling_tgt: float | None = None,
        reg_tv_val: float | None = 1e-5,
        batch_size: int = 8,
        device: str = "cuda" if pt.cuda.is_available() else "cpu",
        save_epochs: bool = True,
        verbose: bool = True,
    ) -> None:
        """Initialize the noise2noise method.

        Parameters
        ----------
        dataset_name : str
            Name of the dataset.
        network_type : Union[str, NetworkParams]
            Type of neural network to use
        network_state : Union[Mapping, None], optional
            Specific network state to load, by default None
        data_scaling_inp : Union[float, None], optional
            Scaling of the input data, by default None
        data_scaling_tgt : Union[float, None], optional
            Scaling of the output, by default None
        reg_tv_val : Union[float, None], optional
            Deep-image prior regularization value, by default 1e-5
        batch_size : int, optional
            Size of the batch, by default 8
        device : str, optional
            Device to use, by default "cuda" if cuda is available, otherwise "cpu"
        save_epochs : bool, optional
            Whether to save network states at each epoch, by default True
        verbose : bool, optional
            Whether to produce verbose output, by default True
        """
        self.dataset_name = dataset_name

        if isinstance(network_type, str):
            self.n_channels = 1
        else:
            self.n_channels = network_type.n_channels_in

        self.net = _create_network(network_type, device=device)

        if network_state is not None:
            if isinstance(network_state, int):
                self._load_state(network_state)
            else:
                self.net.load_state_dict(network_state)

        if data_scaling_inp is not None:
            self.data_scaling_inp = data_scaling_inp
        else:
            self.data_scaling_inp = 1
        if data_scaling_tgt is not None:
            self.data_scaling_tgt = data_scaling_tgt
        else:
            self.data_scaling_tgt = 1

        self.data_bias_inp = 0
        self.data_bias_tgt = 0

        self.reg_val = reg_tv_val
        self.batch_size = batch_size
        self.device = device
        self.save_epochs = save_epochs
        self.verbose = verbose

    def train_supervised(self, inp: NDArray, tgt: NDArray, epochs: int, dset_split: DatasetSplit, algo: str = "adam"):
        """Supervised training.

        Parameters
        ----------
        inp : NDArray
            The input images
        tgt : NDArray
            The target images
        epochs : int
            Number of training epochs
        dset_split : DatasetSplit
            How to split the dataset in training and validation set
        algo : str, optional
            Learning algorithm to use, by default "adam"
        """
        if tgt.ndim == (inp.ndim - 1):
            tgt = np.tile(tgt[None, ...], [inp.shape[0], *np.ones_like(tgt.shape)])

        range_vals_inp = _get_normalization(inp, percentile=0.001)
        range_vals_tgt = _get_normalization(tgt, percentile=0.001)

        self.data_scaling_inp = 1 / (range_vals_inp[1] - range_vals_inp[0])
        self.data_scaling_tgt = 1 / (range_vals_tgt[1] - range_vals_tgt[0])

        self.data_bias_inp = inp.mean() * self.data_scaling_inp
        self.data_bias_tgt = tgt.mean() * self.data_scaling_tgt

        # Rescale the datasets
        inp = inp * self.data_scaling_inp - self.data_bias_inp
        tgt = tgt * self.data_scaling_tgt - self.data_bias_tgt

        # Create datasets
        dset_trn = datasets.SupervisedDataset(inp[dset_split.trn_inds], tgt[dset_split.trn_inds], device=self.device)
        dset_tst = datasets.SupervisedDataset(inp[dset_split.tst_inds], tgt[dset_split.tst_inds], device=self.device)

        dl_trn = DataLoader(dset_trn, batch_size=self.batch_size)
        dl_tst = DataLoader(dset_tst, batch_size=self.batch_size * 16)

        loss_trn, loss_tst = self._train(dl_trn, dl_tst, epochs=epochs, algo=algo)

        if self.verbose:
            self._plot_loss_curves(loss_trn, loss_tst, f"Supervised {algo.upper()}")

    def _train(self, dl_trn: DataLoader, dl_tst: DataLoader, epochs: int, algo: str = "adam") -> tuple[NDArray, NDArray]:
        losses_trn = []
        losses_tst = []
        loss_trn_fn = losses.MSELoss_TV(lambda_val=self.reg_val, reduction="sum")
        loss_tst_fn = pt.nn.MSELoss(reduction="sum")
        optim = _create_optimizer(self.net, algo=algo)

        best_epoch = -1
        best_loss_tst = +np.inf
        best_state = self.net.state_dict()
        best_optim = optim.state_dict()

        dset_trn_size = len(dl_trn)
        dset_tst_size = len(dl_tst)

        for epoch in tqdm(range(epochs), desc=f"Training {algo.upper()}"):
            # Train
            self.net.train()
            loss_trn_val = 0
            for inp_trn, tgt_trn in dl_trn:
                # inp_trn = inp_trn.to(self.device, non_blocking=True)
                # tgt_trn = tgt_trn.to(self.device, non_blocking=True)

                optim.zero_grad()
                output = self.net(inp_trn)
                loss_trn = loss_trn_fn(output, tgt_trn)
                loss_trn.backward()

                loss_trn_val += loss_trn.item()

                optim.step()

            losses_trn.append(loss_trn_val / dset_trn_size)

            # Test
            self.net.eval()
            loss_tst_val = 0
            with pt.inference_mode():
                for inp_tst, tgt_tst in dl_tst:
                    # inp_tst = inp_tst.to(self.device, non_blocking=True)
                    # tgt_tst = tgt_tst.to(self.device, non_blocking=True)

                    output = self.net(inp_tst)
                    loss_tst = loss_tst_fn(output, tgt_tst)

                    loss_tst_val += loss_tst.item()

                losses_tst.append(loss_tst_val / dset_tst_size)

            # Check improvement
            if losses_tst[-1] < best_loss_tst if losses_tst[-1] is not None else False:
                best_loss_tst = losses_tst[-1]
                best_epoch = epoch
                best_state = cp.deepcopy(self.net.state_dict())
                best_optim = cp.deepcopy(optim.state_dict())

            # Save epoch
            if self.save_epochs:
                self._save_state(epoch, self.net.state_dict(), optim.state_dict())

        print(f"Best epoch: {best_epoch}, with tst_loss: {best_loss_tst:.5}")
        if self.save_epochs:
            self._save_state(best_epoch, best_state, best_optim, is_final=True)

        self.net.load_state_dict(best_state)

        return np.array(losses_trn), np.array(losses_tst)

    def _save_state(self, epoch_num: int, net_state: Mapping, optim_state: Mapping, is_final: bool = False) -> None:
        epochs_base_path = Path(self.dataset_name) / "weights"
        epochs_base_path.mkdir(parents=True, exist_ok=True)

        if is_final:
            pt.save(
                {"epoch": epoch_num, "state_dict": net_state, "optimizer": optim_state},
                epochs_base_path / "weights.pt",
            )
        else:
            pt.save(
                {"epoch": epoch_num, "state_dict": net_state, "optimizer": optim_state},
                epochs_base_path / f"weights_epoch_{epoch_num}.pt",
            )

    def _load_state(self, epoch_num: int | None = None) -> None:
        epochs_base_path = Path(self.dataset_name) / "weights"
        if not epochs_base_path.exists():
            raise ValueError("No state to load!")

        if epoch_num is None or epoch_num == -1:
            state_path = epochs_base_path / "weights.pt"
        else:
            state_path = epochs_base_path / f"weights_epoch_{epoch_num}.pt"
        print(f"Loading state path: {state_path}")
        state_dict = pt.load(state_path)
        self.net.load_state_dict(state_dict["state_dict"])

    def _plot_loss_curves(self, train_loss: NDArray, test_loss: NDArray, title: str | None = None) -> None:
        test_argmin = int(np.argmin(test_loss))
        fig, axs = plt.subplots(1, 1, figsize=[7, 2.6])
        if title is not None:
            axs.set_title(title)
        axs.semilogy(np.arange(train_loss.size), train_loss, label="training loss")
        axs.semilogy(np.arange(test_loss.size) + 1, test_loss, label="test loss")
        axs.stem(test_argmin + 1, test_loss[test_argmin], linefmt="C1--", markerfmt="C1o", label=f"Best epoch: {test_argmin}")
        axs.legend()
        axs.grid()
        fig.tight_layout()
        plt.show(block=False)

    def infer(self, inp: NDArray) -> NDArray:
        """Inference, given an initial stack of images.

        Parameters
        ----------
        inp : NDArray
            The input stack of images

        Returns
        -------
        NDArray
            The denoised stack of images
        """
        # Rescale input
        inp = inp * self.data_scaling_inp - self.data_bias_inp

        # Create datasets
        dset = datasets.InferenceDataset(inp, device=self.device)

        dtl = DataLoader(dset, batch_size=self.batch_size)

        output = self._infer(dtl)

        # Rescale output
        return (output + self.data_bias_tgt) / self.data_scaling_tgt

    def _infer(self, dtl: DataLoader) -> NDArray:
        self.net.eval()
        output = []
        with pt.inference_mode():
            for inp in tqdm(dtl, desc="Inference"):
                inp = inp.to(self.device, non_blocking=True)

                out = self.net(inp)
                output.append(out.cpu().numpy())

        output = np.concatenate(output, axis=0)
        if output.shape[1] == 1:
            output = np.squeeze(output, axis=1)
        return output

__init__(dataset_name, network_type, network_state=None, data_scaling_inp=None, data_scaling_tgt=None, reg_tv_val=1e-05, batch_size=8, device='cuda' if pt.cuda.is_available() else 'cpu', save_epochs=True, verbose=True)

Initialize the noise2noise method.

Parameters:

Name Type Description Default
dataset_name str

Name of the dataset.

required
network_type Union[str, NetworkParams]

Type of neural network to use

required
network_state Union[Mapping, None]

Specific network state to load, by default None

None
data_scaling_inp Union[float, None]

Scaling of the input data, by default None

None
data_scaling_tgt Union[float, None]

Scaling of the output, by default None

None
reg_tv_val Union[float, None]

Deep-image prior regularization value, by default 1e-5

1e-05
batch_size int

Size of the batch, by default 8

8
device str

Device to use, by default "cuda" if cuda is available, otherwise "cpu"

'cuda' if is_available() else 'cpu'
save_epochs bool

Whether to save network states at each epoch, by default True

True
verbose bool

Whether to produce verbose output, by default True

True
Source code in src/autoden/algorithms.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def __init__(
    self,
    dataset_name: str,
    network_type: str | NetworkParams,
    network_state: Mapping | None = None,
    data_scaling_inp: float | None = None,
    data_scaling_tgt: float | None = None,
    reg_tv_val: float | None = 1e-5,
    batch_size: int = 8,
    device: str = "cuda" if pt.cuda.is_available() else "cpu",
    save_epochs: bool = True,
    verbose: bool = True,
) -> None:
    """Initialize the noise2noise method.

    Parameters
    ----------
    dataset_name : str
        Name of the dataset.
    network_type : Union[str, NetworkParams]
        Type of neural network to use
    network_state : Union[Mapping, None], optional
        Specific network state to load, by default None
    data_scaling_inp : Union[float, None], optional
        Scaling of the input data, by default None
    data_scaling_tgt : Union[float, None], optional
        Scaling of the output, by default None
    reg_tv_val : Union[float, None], optional
        Deep-image prior regularization value, by default 1e-5
    batch_size : int, optional
        Size of the batch, by default 8
    device : str, optional
        Device to use, by default "cuda" if cuda is available, otherwise "cpu"
    save_epochs : bool, optional
        Whether to save network states at each epoch, by default True
    verbose : bool, optional
        Whether to produce verbose output, by default True
    """
    self.dataset_name = dataset_name

    if isinstance(network_type, str):
        self.n_channels = 1
    else:
        self.n_channels = network_type.n_channels_in

    self.net = _create_network(network_type, device=device)

    if network_state is not None:
        if isinstance(network_state, int):
            self._load_state(network_state)
        else:
            self.net.load_state_dict(network_state)

    if data_scaling_inp is not None:
        self.data_scaling_inp = data_scaling_inp
    else:
        self.data_scaling_inp = 1
    if data_scaling_tgt is not None:
        self.data_scaling_tgt = data_scaling_tgt
    else:
        self.data_scaling_tgt = 1

    self.data_bias_inp = 0
    self.data_bias_tgt = 0

    self.reg_val = reg_tv_val
    self.batch_size = batch_size
    self.device = device
    self.save_epochs = save_epochs
    self.verbose = verbose

infer(inp)

Inference, given an initial stack of images.

Parameters:

Name Type Description Default
inp NDArray

The input stack of images

required

Returns:

Type Description
NDArray

The denoised stack of images

Source code in src/autoden/algorithms.py
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def infer(self, inp: NDArray) -> NDArray:
    """Inference, given an initial stack of images.

    Parameters
    ----------
    inp : NDArray
        The input stack of images

    Returns
    -------
    NDArray
        The denoised stack of images
    """
    # Rescale input
    inp = inp * self.data_scaling_inp - self.data_bias_inp

    # Create datasets
    dset = datasets.InferenceDataset(inp, device=self.device)

    dtl = DataLoader(dset, batch_size=self.batch_size)

    output = self._infer(dtl)

    # Rescale output
    return (output + self.data_bias_tgt) / self.data_scaling_tgt

train_supervised(inp, tgt, epochs, dset_split, algo='adam')

Supervised training.

Parameters:

Name Type Description Default
inp NDArray

The input images

required
tgt NDArray

The target images

required
epochs int

Number of training epochs

required
dset_split DatasetSplit

How to split the dataset in training and validation set

required
algo str

Learning algorithm to use, by default "adam"

'adam'
Source code in src/autoden/algorithms.py
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
def train_supervised(self, inp: NDArray, tgt: NDArray, epochs: int, dset_split: DatasetSplit, algo: str = "adam"):
    """Supervised training.

    Parameters
    ----------
    inp : NDArray
        The input images
    tgt : NDArray
        The target images
    epochs : int
        Number of training epochs
    dset_split : DatasetSplit
        How to split the dataset in training and validation set
    algo : str, optional
        Learning algorithm to use, by default "adam"
    """
    if tgt.ndim == (inp.ndim - 1):
        tgt = np.tile(tgt[None, ...], [inp.shape[0], *np.ones_like(tgt.shape)])

    range_vals_inp = _get_normalization(inp, percentile=0.001)
    range_vals_tgt = _get_normalization(tgt, percentile=0.001)

    self.data_scaling_inp = 1 / (range_vals_inp[1] - range_vals_inp[0])
    self.data_scaling_tgt = 1 / (range_vals_tgt[1] - range_vals_tgt[0])

    self.data_bias_inp = inp.mean() * self.data_scaling_inp
    self.data_bias_tgt = tgt.mean() * self.data_scaling_tgt

    # Rescale the datasets
    inp = inp * self.data_scaling_inp - self.data_bias_inp
    tgt = tgt * self.data_scaling_tgt - self.data_bias_tgt

    # Create datasets
    dset_trn = datasets.SupervisedDataset(inp[dset_split.trn_inds], tgt[dset_split.trn_inds], device=self.device)
    dset_tst = datasets.SupervisedDataset(inp[dset_split.tst_inds], tgt[dset_split.tst_inds], device=self.device)

    dl_trn = DataLoader(dset_trn, batch_size=self.batch_size)
    dl_tst = DataLoader(dset_tst, batch_size=self.batch_size * 16)

    loss_trn, loss_tst = self._train(dl_trn, dl_tst, epochs=epochs, algo=algo)

    if self.verbose:
        self._plot_loss_curves(loss_trn, loss_tst, f"Supervised {algo.upper()}")

N2N

Bases: Denoiser

Self-supervised denoising from pairs of images.

Source code in src/autoden/algorithms.py
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
class N2N(Denoiser):
    """Self-supervised denoising from pairs of images."""

    def train_selfsupervised(
        self, inp: NDArray, epochs: int, dset_split: DatasetSplit, strategy: str = "1:X", algo: str = "adam"
    ):
        """Self-supervised training.

        Parameters
        ----------
        inp : NDArray
            The input images, which will also be targets
        epochs : int
            Number of training epochs
        dset_split : DatasetSplit
            How to split the dataset in training and validation set
        strategy : str, optional
            The grouping strategy to use (either one-to-many, or many-to-one), by default "1:X"
        algo : str, optional
            Learning algorithm to use, by default "adam"
        """
        range_vals_tgt = range_vals_inp = _get_normalization(inp, percentile=0.001)

        self.data_scaling_inp = 1 / (range_vals_inp[1] - range_vals_inp[0])
        self.data_scaling_tgt = 1 / (range_vals_tgt[1] - range_vals_tgt[0])

        self.data_bias_inp = inp.mean() * self.data_scaling_inp
        self.data_bias_tgt = inp.mean() * self.data_scaling_tgt

        # Rescale the datasets
        inp = inp * self.data_scaling_inp - self.data_bias_inp

        inp_trn = inp[dset_split.trn_inds]
        inp_tst = inp[dset_split.tst_inds]

        list_dsets_trn = [datasets.NumpyDataset(x[None, ...], n_channels=self.n_channels) for x in inp_trn]
        list_dsets_tst = [datasets.NumpyDataset(x[None, ...], n_channels=self.n_channels) for x in inp_tst]

        # Create datasets
        dset_trn = datasets.SelfsupervisedDataset(*list_dsets_trn, strategy=strategy, device=self.device)
        dset_tst = datasets.SelfsupervisedDataset(*list_dsets_tst, strategy=strategy, device=self.device)

        dl_trn = DataLoader(dset_trn, batch_size=self.batch_size)
        dl_tst = DataLoader(dset_tst, batch_size=self.batch_size * 16)

        loss_trn, loss_tst = self._train(dl_trn, dl_tst, epochs=epochs, algo=algo)

        if self.verbose:
            self._plot_loss_curves(loss_trn, loss_tst, f"Self-supervised N2N {algo.upper()}")

train_selfsupervised(inp, epochs, dset_split, strategy='1:X', algo='adam')

Self-supervised training.

Parameters:

Name Type Description Default
inp NDArray

The input images, which will also be targets

required
epochs int

Number of training epochs

required
dset_split DatasetSplit

How to split the dataset in training and validation set

required
strategy str

The grouping strategy to use (either one-to-many, or many-to-one), by default "1:X"

'1:X'
algo str

Learning algorithm to use, by default "adam"

'adam'
Source code in src/autoden/algorithms.py
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def train_selfsupervised(
    self, inp: NDArray, epochs: int, dset_split: DatasetSplit, strategy: str = "1:X", algo: str = "adam"
):
    """Self-supervised training.

    Parameters
    ----------
    inp : NDArray
        The input images, which will also be targets
    epochs : int
        Number of training epochs
    dset_split : DatasetSplit
        How to split the dataset in training and validation set
    strategy : str, optional
        The grouping strategy to use (either one-to-many, or many-to-one), by default "1:X"
    algo : str, optional
        Learning algorithm to use, by default "adam"
    """
    range_vals_tgt = range_vals_inp = _get_normalization(inp, percentile=0.001)

    self.data_scaling_inp = 1 / (range_vals_inp[1] - range_vals_inp[0])
    self.data_scaling_tgt = 1 / (range_vals_tgt[1] - range_vals_tgt[0])

    self.data_bias_inp = inp.mean() * self.data_scaling_inp
    self.data_bias_tgt = inp.mean() * self.data_scaling_tgt

    # Rescale the datasets
    inp = inp * self.data_scaling_inp - self.data_bias_inp

    inp_trn = inp[dset_split.trn_inds]
    inp_tst = inp[dset_split.tst_inds]

    list_dsets_trn = [datasets.NumpyDataset(x[None, ...], n_channels=self.n_channels) for x in inp_trn]
    list_dsets_tst = [datasets.NumpyDataset(x[None, ...], n_channels=self.n_channels) for x in inp_tst]

    # Create datasets
    dset_trn = datasets.SelfsupervisedDataset(*list_dsets_trn, strategy=strategy, device=self.device)
    dset_tst = datasets.SelfsupervisedDataset(*list_dsets_tst, strategy=strategy, device=self.device)

    dl_trn = DataLoader(dset_trn, batch_size=self.batch_size)
    dl_tst = DataLoader(dset_tst, batch_size=self.batch_size * 16)

    loss_trn, loss_tst = self._train(dl_trn, dl_tst, epochs=epochs, algo=algo)

    if self.verbose:
        self._plot_loss_curves(loss_trn, loss_tst, f"Self-supervised N2N {algo.upper()}")

N2V

Bases: Denoiser

Self-supervised denoising from single images.

Source code in src/autoden/algorithms.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
class N2V(Denoiser):
    "Self-supervised denoising from single images."

    def train_selfsupervised(
        self,
        inp: NDArray,
        epochs: int,
        dset_split: DatasetSplit,
        mask_shape: int | Sequence[int] | NDArray = 1,
        ratio_blind_spot: float = 0.015,
        algo: str = "adam",
    ):
        """Self-supervised training.

        Parameters
        ----------
        inp : NDArray
            The input images, which will also be targets
        epochs : int
            Number of training epochs
        dset_split : DatasetSplit
            How to split the dataset in training and validation set
        mask_shape : int | Sequence[int] | NDArray
            Shape of the blind spot mask, by default 1.
        algo : str, optional
            Learning algorithm to use, by default "adam"
        """
        range_vals_tgt = range_vals_inp = _get_normalization(inp, percentile=0.001)

        self.data_scaling_inp = 1 / (range_vals_inp[1] - range_vals_inp[0])
        self.data_scaling_tgt = 1 / (range_vals_tgt[1] - range_vals_tgt[0])

        self.data_bias_inp = inp.mean() * self.data_scaling_inp
        self.data_bias_tgt = inp.mean() * self.data_scaling_tgt

        # Rescale the datasets
        inp = inp * self.data_scaling_inp - self.data_bias_inp

        inp_trn = inp[dset_split.trn_inds]
        inp_tst = inp[dset_split.tst_inds]

        dsets_trn = datasets.NumpyDataset(inp_trn, n_channels=self.n_channels)
        dsets_tst = datasets.NumpyDataset(inp_tst, n_channels=self.n_channels)

        # Create datasets
        dset_trn = datasets.InferenceDataset(dsets_trn, device=self.device)
        dset_tst = datasets.InferenceDataset(dsets_tst, device=self.device)

        dl_trn = DataLoader(dset_trn, batch_size=self.batch_size)
        dl_tst = DataLoader(dset_tst, batch_size=self.batch_size * 16)

        losses_trn, losses_tst = self._train_n2v(
            dl_trn, dl_tst, epochs=epochs, mask_shape=mask_shape, ratio_blind_spot=ratio_blind_spot, algo=algo
        )

        self._plot_loss_curves(losses_trn, losses_tst, f"Self-supervised {self.__class__.__name__} {algo.upper()}")

    def _train_n2v(
        self,
        dl_trn: DataLoader,
        dl_tst: DataLoader,
        epochs: int,
        mask_shape: int | Sequence[int] | NDArray,
        ratio_blind_spot: float,
        algo: str = "adam",
    ) -> tuple[NDArray, NDArray]:
        losses_trn = []
        losses_tst = []
        # loss_trn_fn = models.MSELoss_TV(lambda_val=self.reg_tv_val, reduction="sum")
        loss_trn_fn = pt.nn.MSELoss(reduction="sum")
        loss_tst_fn = pt.nn.MSELoss(reduction="sum")
        optim = _create_optimizer(self.net, algo=algo)

        best_epoch = -1
        best_loss_tst = +np.inf
        best_state = self.net.state_dict()
        best_optim = optim.state_dict()

        dset_trn_size = len(dl_trn)
        dset_tst_size = len(dl_tst)

        for epoch in tqdm(range(epochs), desc=f"Training {algo.upper()}"):
            # Train
            self.net.train()
            loss_trn_val = 0
            for inp_trn in dl_trn:
                inp_trn = pt.squeeze(inp_trn, dim=0).swapaxes(0, 1)
                mask = _random_probe_mask(inp_trn.shape[-2:], mask_shape, ratio_blind_spots=ratio_blind_spot)
                to_damage = np.where(mask > 0)
                to_check = np.where(mask > 1)
                inp_trn_damaged = pt.clone(inp_trn)
                size_to_damage = inp_trn_damaged[:, :, to_damage[0], to_damage[1]].shape
                inp_trn_damaged[:, :, to_damage[0], to_damage[1]] = pt.randn(
                    size_to_damage, device=inp_trn.device, dtype=inp_trn.dtype
                )

                optim.zero_grad()
                out_trn = self.net(inp_trn_damaged)
                out_to_check = out_trn[:, :, to_check[0], to_check[1]].flatten()
                ref_to_check = inp_trn[:, :, to_check[0], to_check[1]].flatten()
                loss_trn = loss_trn_fn(out_to_check, ref_to_check)
                if self.reg_val is not None:
                    loss_trn += losses.LossTV(self.reg_val, reduction="sum")(out_trn)
                loss_trn.backward()

                loss_trn_val += loss_trn.item()

                optim.step()

            losses_trn.append(loss_trn_val / dset_trn_size)

            # Test
            self.net.eval()
            loss_tst_val = 0
            with pt.inference_mode():
                for inp_tst in dl_tst:
                    inp_tst = pt.squeeze(inp_tst, dim=0).swapaxes(0, 1)
                    mask = _random_probe_mask(inp_tst.shape[-2:], mask_shape, ratio_blind_spots=ratio_blind_spot)
                    to_damage = np.where(mask > 0)
                    to_check = np.where(mask > 1)
                    inp_tst_damaged = pt.clone(inp_tst)
                    size_to_damage = inp_tst_damaged[:, :, to_damage[0], to_damage[1]].shape
                    inp_tst_damaged[:, :, to_damage[0], to_damage[1]] = pt.randn(
                        size_to_damage, device=inp_tst.device, dtype=inp_tst.dtype
                    )

                    out_tst = self.net(inp_tst_damaged)
                    out_to_check = out_tst[:, :, to_check[0], to_check[1]].flatten()
                    ref_to_check = inp_tst[:, :, to_check[0], to_check[1]].flatten()
                    loss_tst = loss_tst_fn(out_to_check, ref_to_check)

                    loss_tst_val += loss_tst.item()

                losses_tst.append(loss_tst_val / dset_tst_size)

            # Check improvement
            if losses_tst[-1] < best_loss_tst if losses_tst[-1] is not None else False:
                best_loss_tst = losses_tst[-1]
                best_epoch = epoch
                best_state = cp.deepcopy(self.net.state_dict())
                best_optim = cp.deepcopy(optim.state_dict())

            # Save epoch
            if self.save_epochs:
                self._save_state(epoch, self.net.state_dict(), optim.state_dict())

        print(f"Best epoch: {best_epoch}, with tst_loss: {best_loss_tst:.5}")
        if self.save_epochs:
            self._save_state(best_epoch, best_state, best_optim, is_final=True)

        self.net.load_state_dict(best_state)

        losses_trn = np.array(losses_trn)
        losses_tst = np.array(losses_tst)

        return losses_trn, losses_tst

train_selfsupervised(inp, epochs, dset_split, mask_shape=1, ratio_blind_spot=0.015, algo='adam')

Self-supervised training.

Parameters:

Name Type Description Default
inp NDArray

The input images, which will also be targets

required
epochs int

Number of training epochs

required
dset_split DatasetSplit

How to split the dataset in training and validation set

required
mask_shape int | Sequence[int] | NDArray

Shape of the blind spot mask, by default 1.

1
algo str

Learning algorithm to use, by default "adam"

'adam'
Source code in src/autoden/algorithms.py
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
def train_selfsupervised(
    self,
    inp: NDArray,
    epochs: int,
    dset_split: DatasetSplit,
    mask_shape: int | Sequence[int] | NDArray = 1,
    ratio_blind_spot: float = 0.015,
    algo: str = "adam",
):
    """Self-supervised training.

    Parameters
    ----------
    inp : NDArray
        The input images, which will also be targets
    epochs : int
        Number of training epochs
    dset_split : DatasetSplit
        How to split the dataset in training and validation set
    mask_shape : int | Sequence[int] | NDArray
        Shape of the blind spot mask, by default 1.
    algo : str, optional
        Learning algorithm to use, by default "adam"
    """
    range_vals_tgt = range_vals_inp = _get_normalization(inp, percentile=0.001)

    self.data_scaling_inp = 1 / (range_vals_inp[1] - range_vals_inp[0])
    self.data_scaling_tgt = 1 / (range_vals_tgt[1] - range_vals_tgt[0])

    self.data_bias_inp = inp.mean() * self.data_scaling_inp
    self.data_bias_tgt = inp.mean() * self.data_scaling_tgt

    # Rescale the datasets
    inp = inp * self.data_scaling_inp - self.data_bias_inp

    inp_trn = inp[dset_split.trn_inds]
    inp_tst = inp[dset_split.tst_inds]

    dsets_trn = datasets.NumpyDataset(inp_trn, n_channels=self.n_channels)
    dsets_tst = datasets.NumpyDataset(inp_tst, n_channels=self.n_channels)

    # Create datasets
    dset_trn = datasets.InferenceDataset(dsets_trn, device=self.device)
    dset_tst = datasets.InferenceDataset(dsets_tst, device=self.device)

    dl_trn = DataLoader(dset_trn, batch_size=self.batch_size)
    dl_tst = DataLoader(dset_tst, batch_size=self.batch_size * 16)

    losses_trn, losses_tst = self._train_n2v(
        dl_trn, dl_tst, epochs=epochs, mask_shape=mask_shape, ratio_blind_spot=ratio_blind_spot, algo=algo
    )

    self._plot_loss_curves(losses_trn, losses_tst, f"Self-supervised {self.__class__.__name__} {algo.upper()}")