denoiser
¶
Base class and functions for all denoising algorithms.
@author: Nicola VIGANÒ, CEA-MEM, Grenoble, France
Classes:
-
DataScaleBias
–Data scale and bias.
-
Denoiser
–Base denoising class.
Functions:
-
compute_scaling_selfsupervised
–Compute input data scaling and bias for self-supervised learning.
-
compute_scaling_supervised
–Compute input and target data scaling and bias for supervised learning.
-
data_to_tensor
–Convert a NumPy array to a PyTorch tensor.
-
get_flip_dims
–Generate all possible combinations of dimensions to flip for a given number of dimensions.
-
get_normalization_range
–Calculate the normalization range for a given volume.
-
get_random_image_indices
–Return a list of random indices from 0 to num_imgs - 1.
-
get_random_pixel_mask
–Generate a random pixel mask for a given data shape.
-
random_flips
–Randomly flip images.
-
random_rotations
–Randomly rotate images.
DataScaleBias
dataclass
¶
DataScaleBias(
scale_inp: float | NDArray = 1.0,
scale_out: float | NDArray = 1.0,
scale_tgt: float | NDArray = 1.0,
bias_inp: float | NDArray = 0.0,
bias_out: float | NDArray = 0.0,
bias_tgt: float | NDArray = 0.0,
)
Data scale and bias.
Denoiser
¶
Denoiser(
model: int | str | NetworkParams | Module | Mapping,
data_scale_bias: DataScaleBias | None = None,
reg_val: float | LossRegularizer | None = None,
device: str = "cuda" if is_available() else "cpu",
batch_size: int | None = None,
augmentation: str | Sequence[str] | None = None,
save_epochs_dir: str | None = None,
verbose: bool = True,
)
Bases: ABC
Base denoising class.
Parameters:
-
model
(str | NetworkParams | Module | Mapping | None
) –Type of neural network to use or a specific network (or state) to use
-
data_scale_bias
(DataScaleBias | None
, default:None
) –Scale and bias of the input data, by default None
-
reg_val
(float | None
, default:None
) –Regularization value, by default 1e-5
-
device
(str
, default:'cuda' if is_available() else 'cpu'
) –Device to use, by default "cuda" if cuda is available, otherwise "cpu"
-
save_epochs_dir
(str | None
, default:None
) –Directory where to save network states at each epoch. If None disabled, by default None
-
verbose
(bool
, default:True
) –Whether to produce verbose output, by default True
Methods:
-
infer
–Inference, given an initial stack of images.
-
train
–Training of the model, given the required input.
Attributes:
Source code in src/autoden/algorithms/denoiser.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
n_dims
property
¶
n_dims: int
Returns the expected signal dimensions.
If the model is an instance of SerializableModel
and has an init_params
attribute containing the key "n_dims"
, this property returns the value
associated with "n_dims"
. Otherwise, it defaults to 2.
Returns:
-
int
–The expected signal dimensions.
infer
¶
infer(inp: NDArray) -> NDArray
Inference, given an initial stack of images.
Parameters:
-
inp
(NDArray
) –The input stack of images
Returns:
-
NDArray
–The denoised stack of images
Source code in src/autoden/algorithms/denoiser.py
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
|
train
abstractmethod
¶
Training of the model, given the required input.
Source code in src/autoden/algorithms/denoiser.py
465 466 467 |
|
compute_scaling_selfsupervised
¶
compute_scaling_selfsupervised(
inp: NDArray,
) -> DataScaleBias
Compute input data scaling and bias for self-supervised learning.
Parameters:
-
inp
(NDArray
) –Input data.
Returns:
-
DataScaleBias
–An instance of DataScaleBias containing the computed scaling and bias values.
Source code in src/autoden/algorithms/denoiser.py
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
compute_scaling_supervised
¶
compute_scaling_supervised(
inp: NDArray, tgt: NDArray
) -> DataScaleBias
Compute input and target data scaling and bias for supervised learning.
Parameters:
-
inp
(NDArray
) –Input data.
-
tgt
(NDArray
) –Target data.
Returns:
-
DataScaleBias
–An instance of DataScaleBias containing the computed scaling and bias values.
Source code in src/autoden/algorithms/denoiser.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
data_to_tensor
¶
data_to_tensor(
data: NDArray,
device: str,
n_dims: int = 2,
spectral_axis: int | None = None,
dtype: DTypeLike | None = float32,
) -> Tensor
Convert a NumPy array to a PyTorch tensor.
Parameters:
-
data
(NDArray
) –The input data to be converted to a tensor.
-
device
(str
) –The device to which the tensor should be moved (e.g., 'cpu', 'cuda').
-
n_dims
(int
, default:2
) –The number of dimensions to consider for the data shape, by default 2.
-
spectral_axis
(int or None
, default:None
) –The axis along which the spectral data is located, by default None.
-
dtype
(DTypeLike or None
, default:float32
) –The data type to which the data should be converted, by default np.float32.
Returns:
-
Tensor
–The converted PyTorch tensor.
Notes
If spectral_axis
is provided, the data is moved to the specified axis.
Otherwise, the data is expanded to include an additional dimension.
The data is then reshaped and converted to the specified data type before
being converted to a PyTorch tensor and moved to the specified device.
Source code in src/autoden/algorithms/denoiser.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
get_flip_dims
¶
Generate all possible combinations of dimensions to flip for a given number of dimensions.
Parameters:
-
n_dims
(int
) –The number of dimensions.
Returns:
-
Sequence[tuple[int, ...]]
–A sequence of tuples, where each tuple represents a combination of dimensions to flip. The dimensions are represented by negative indices, ranging from -n_dims to -1.
Examples:
>>> _get_flip_dims(2)
[(), (-2,), (-1,), (-2, -1)]
Source code in src/autoden/algorithms/denoiser.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
|
get_normalization_range
¶
get_normalization_range(
vol: NDArray, percentile: float | None = None
) -> tuple[float, float, float]
Calculate the normalization range for a given volume.
Parameters:
-
vol
(NDArray
) –The input volume as a NumPy array.
-
percentile
(float
, default:None
) –The percentile to use for calculating the normalization range. If None, the minimum, maximum, and mean of the entire volume are used. Default is None.
Returns:
-
tuple[float, float, float]
–A tuple containing the minimum, maximum, and mean values of the volume within the specified percentile range. If
percentile
is None, the minimum, maximum, and mean of the entire volume are returned.
Notes
If percentile
is provided, the function calculates the indices for the minimum
and maximum values based on the specified percentile. The mean value is then
calculated from the range between these indices.
Source code in src/autoden/algorithms/denoiser.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|
get_random_image_indices
¶
Return a list of random indices from 0 to num_imgs - 1.
Parameters:
Returns:
-
list
–List of random indices.
Source code in src/autoden/algorithms/denoiser.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
get_random_pixel_mask
¶
Generate a random pixel mask for a given data shape.
This function creates a mask where a specified ratio of pixels are set to True, effectively masking those pixels. The remaining pixels are set to True.
Parameters:
-
data_shape
(Sequence[int] | NDArray
) –The shape of the data array for which the mask is to be generated.
-
mask_pixel_ratio
(float
) –The ratio of pixels to be masked (set to True). Must be between 0 and 1.
Returns:
-
NDArray
–A boolean array of the same shape as
data_shape
with the specified ratio of pixels set to True.
Examples:
>>> data_shape = (10, 10)
>>> mask_pixel_ratio = 0.1
>>> mask = get_random_pixel_mask(data_shape, mask_pixel_ratio)
>>> print(mask)
Source code in src/autoden/algorithms/denoiser.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
random_flips
¶
Randomly flip images.
Parameters:
-
*imgs
(Tensor
, default:()
) –The input images
-
flips
(Sequence[tuple[int, ...]] | None
, default:None
) –If None, it will call _get_flip_dims on the ndim of the first image. The flips to be selected from, by default None.
Returns:
-
Sequence[Tensor]
–The flipped images.
Source code in src/autoden/algorithms/denoiser.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
random_rotations
¶
Randomly rotate images.
Parameters:
-
*imgs
(Tensor
, default:()
) –The input images
-
dims
(tuple[int, int]
, default:(-2, -1)
) –The dimensions to rotate, by default (-2, -1)
Returns:
-
Sequence[Tensor]
–The rotated images.
Source code in src/autoden/algorithms/denoiser.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|