noise2noise
¶
Self-supervised denoiser implementation, based on Noise2Noise.
@author: Nicola VIGANÒ, CEA-MEM, Grenoble, France
Classes:
-
N2N
–Self-supervised denoising from pairs of images.
N2N
¶
N2N(
model: int | str | NetworkParams | Module | Mapping,
data_scale_bias: DataScaleBias | None = None,
reg_val: float | LossRegularizer | None = None,
device: str = "cuda" if is_available() else "cpu",
batch_size: int | None = None,
augmentation: str | Sequence[str] | None = None,
save_epochs_dir: str | None = None,
verbose: bool = True,
)
Bases: Denoiser
Self-supervised denoising from pairs of images.
Parameters:
-
model
(str | NetworkParams | Module | Mapping | None
) –Type of neural network to use or a specific network (or state) to use
-
data_scale_bias
(DataScaleBias | None
, default:None
) –Scale and bias of the input data, by default None
-
reg_val
(float | None
, default:None
) –Regularization value, by default 1e-5
-
device
(str
, default:'cuda' if is_available() else 'cpu'
) –Device to use, by default "cuda" if cuda is available, otherwise "cpu"
-
save_epochs_dir
(str | None
, default:None
) –Directory where to save network states at each epoch. If None disabled, by default None
-
verbose
(bool
, default:True
) –Whether to produce verbose output, by default True
Methods:
-
infer
–Perform inference on the input data.
-
prepare_data
–Prepare input data for training.
-
train
–Train the denoiser using the Noise2Noise self-supervised approach.
Attributes:
Source code in src/autoden/algorithms/denoiser.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
n_dims
property
¶
n_dims: int
Returns the expected signal dimensions.
If the model is an instance of SerializableModel
and has an init_params
attribute containing the key "n_dims"
, this property returns the value
associated with "n_dims"
. Otherwise, it defaults to 2.
Returns:
-
int
–The expected signal dimensions.
infer
¶
infer(inp: NDArray, average_splits: bool = True) -> NDArray
Perform inference on the input data.
Parameters:
-
inp
(NDArray
) –The input data to perform inference on. It is expected to have an extra dimension including the different splits.
-
average_splits
(bool
, default:True
) –If True, the splits are averaged. Default is True.
Returns:
-
NDArray
–The inferred output data. If
average_splits
is True, the splits are averaged.
Notes
If self.batch_size
is set, the input data is processed in batches to avoid memory issues.
Source code in src/autoden/algorithms/noise2noise.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
prepare_data
¶
prepare_data(
inp: NDArray,
num_tst_ratio: float = 0.2,
strategy: str = "1:X",
) -> tuple[NDArray, NDArray, NDArray]
Prepare input data for training.
Parameters:
-
inp
(NDArray
) –The input data to be used for training. This should be a NumPy array of shape (N, H, W), where N is the number of samples, and H and W are the height and width of each sample, respectively.
-
num_tst_ratio
(float
, default:0.2
) –The ratio of the input data to be used for testing. The remaining data will be used for training. Default is 0.2.
-
strategy
(str
, default:'1:X'
) –The strategy to be used for creating input-target pairs. The available strategies are: - "1:X": Use the mean of the remaining samples as the target for each sample. - "X:1": Use the mean of the remaining samples as the input for each sample. Default is "1:X".
Returns:
-
tuple[NDArray, NDArray, NDArray]
–A tuple containing: - The input data array. - The target data array. - The mask array indicating the training pixels.
Notes
This function generates input-target pairs based on the specified strategy. It also generates a mask array indicating the training pixels based on the provided ratio.
Source code in src/autoden/algorithms/noise2noise.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
train
¶
train(
inp: NDArray,
tgt: NDArray,
pixel_mask_tst: NDArray,
epochs: int,
learning_rate: float = 0.001,
optimizer: str = "adam",
lower_limit: float | NDArray | None = None,
restarts: int | None = None,
accum_grads: bool = False,
) -> dict[str, NDArray]
Train the denoiser using the Noise2Noise self-supervised approach.
Parameters:
-
inp
(NDArray
) –The input data to be used for training. This should be a NumPy array of shape (N, H, W), where N is the number of samples, and H and W are the height and width of each sample, respectively.
-
tgt
(NDArray
) –The target data to be used for training. This should be a NumPy array of shape (N, H, W), where N is the number of samples, and H and W are the height and width of each sample, respectively.
-
pixel_mask_tst
(NDArray
) –The mask array indicating the test pixels.
-
epochs
(int
) –The number of epochs to train the model.
-
learning_rate
(float
, default:0.001
) –The learning rate for the optimizer. Default is 1e-3.
-
optimizer
(str
, default:'adam'
) –The optimization algorithm to be used for training. Default is "adam".
-
lower_limit
(float | NDArray | None
, default:None
) –The lower limit for the input data. If provided, the input data will be clipped to this limit. Default is None.
-
restarts
(int | None
, default:None
) –The number of times to restart the cosine annealing of the learning rate. If provided, the cosine annealing of the learning rate will be restarted the specified number of times. Default is None.
-
accum_grads
(bool
, default:False
) –Whether to accumulate gradients over multiple batches. If True, gradients will be accumulated over multiple batches before updating the model parameters. Default is False.
Returns:
Notes
This method uses the Noise2Noise self-supervised approach to train the denoiser. The input data is used to generate target data based on the specified strategy. The training process involves creating pairs of input and target data and then training the model to minimize the difference between the predicted and target data.
Source code in src/autoden/algorithms/noise2noise.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|