dncnn
¶
Classes:
-
ConvBlock
–Convolution block: conv => BN => act.
-
DnCNN
–Implementation of the DnCNN architecture from [1].
ConvBlock
¶
ConvBlock(
in_ch: int,
out_ch: int,
kernel_size: int,
pad_mode: str = "replicate",
last_block: bool = False,
)
Bases: Sequential
Convolution block: conv => BN => act.
Source code in src/autoden/models/dncnn.py
8 9 10 11 12 13 14 15 16 17 |
|
DnCNN
¶
DnCNN(
n_channels_in: int,
n_channels_out: int,
n_layers: int = 20,
n_features: int = 32,
kernel_size: int = 3,
pad_mode: str = "replicate",
device: str = "cuda" if is_available() else "cpu",
)
Bases: Sequential
Implementation of the DnCNN architecture from [1].
[1] Zhang, et al., "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," IEEE Trans. on Image Processing, 2017.
Source code in src/autoden/models/dncnn.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|