msd
¶
Module implementing MS-D net.
Classes:
-
DilatedConvBlock
–Dilated convolution block (dilated_conv => BN => ReLU).
-
MSDDilBlock
–MS-D Block containing the sequence of dilated convolutional layers.
-
MSDSampBlock
–MS-D Block containing the sequence of dilated convolutional layers.
-
MSDnet
–Simple MS-D net implementation.
-
SamplingConvBlock
–Down-sampling convolution module (down-samp => conv => BN => ReLU => up-samp).
DilatedConvBlock
¶
DilatedConvBlock(
in_ch: int,
out_ch: int,
dilation: int = 1,
pad_mode: str = "replicate",
n_dims: int = 2,
)
Bases: Sequential
Dilated convolution block (dilated_conv => BN => ReLU).
Source code in src/autoden/models/msd.py
26 27 28 29 30 31 |
|
MSDDilBlock
¶
MSDDilBlock(
n_channels_in: int,
n_features: int,
n_layers: int,
dilations: Sequence[int] | NDArray,
n_dims: int = 2,
)
Bases: Module
MS-D Block containing the sequence of dilated convolutional layers.
Source code in src/autoden/models/msd.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|
MSDSampBlock
¶
MSDSampBlock(
n_channels_in: int,
n_features: int,
n_layers: int,
dilations: Sequence[int] | NDArray,
n_dims: int = 2,
)
Bases: Module
MS-D Block containing the sequence of dilated convolutional layers.
Source code in src/autoden/models/msd.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
MSDnet
¶
MSDnet(
n_channels_in: int = 1,
n_channels_out: int = 1,
n_layers: int = 12,
n_features: int = 1,
n_dims: int = 2,
dilations: Sequence[int] | NDArray = tuple(range(1, 5)),
device: str = "cuda" if is_available() else "cpu",
use_dilations: bool = True,
)
Bases: Module
Simple MS-D net implementation.
Source code in src/autoden/models/msd.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
SamplingConvBlock
¶
Bases: Sequential
Down-sampling convolution module (down-samp => conv => BN => ReLU => up-samp).
Source code in src/autoden/models/msd.py
37 38 39 40 41 42 43 44 45 46 47 48 49 |
|