unet
¶
Implementation of a flexible U-net.
Originally inspired by: https://github.com/milesial/Pytorch-UNet
Classes:
-
ConvBlock
–Convolution block: conv => BN => act.
-
DoubleConv
–Double convolution (conv => BN => ReLU) * 2.
-
DownBlock
–Down-scaling block.
-
UNet
–U-net model.
-
UpBlock
–Up-scaling block.
ConvBlock
¶
ConvBlock(
in_ch: int,
out_ch: int,
kernel_size: int,
n_dims: int = 2,
stride: int = 1,
dilation: int = 1,
pad_mode: str = "replicate",
residual: bool = False,
bias: bool = True,
last_block: bool = False,
)
Bases: Sequential
Convolution block: conv => BN => act.
Source code in src/autoden/models/unet.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
DoubleConv
¶
Bases: Sequential
Double convolution (conv => BN => ReLU) * 2.
Source code in src/autoden/models/unet.py
91 92 93 94 95 |
|
DownBlock
¶
DownBlock(
in_ch: int,
out_ch: int,
n_dims: int = 2,
bilinear: bool = True,
pad_mode: str = "replicate",
)
Bases: Sequential
Down-scaling block.
Source code in src/autoden/models/unet.py
101 102 103 104 105 106 107 108 109 110 111 |
|
UNet
¶
UNet(
n_channels_in: int,
n_channels_out: int,
n_features: int = 32,
n_levels: int = 3,
n_dims: int = 2,
n_channels_skip: int | None = None,
bilinear: bool = True,
pad_mode: str = "replicate",
device: str = "cuda" if is_available() else "cpu",
verbose: bool = False,
)
Bases: Module
U-net model.
Source code in src/autoden/models/unet.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
UpBlock
¶
UpBlock(
in_ch: int,
skip_ch: int | None,
out_ch: int,
n_dims: int = 2,
linear: bool = True,
pad_mode: str = "replicate",
)
Bases: Module
Up-scaling block.
Source code in src/autoden/models/unet.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|